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high resolution MS data directly onto pathways, (ii) cross-integration 
of genomic and proteomic data and (iii) metabolite identity verifica-
tion via data-dependent MS/MS analysis, either separately or as part 
of the autonomous workflow5.

Our multi-omic analysis tool uses embedded BioCyc4 and 
Uniprot6 databases to map user-uploaded gene and protein data onto 
the predicted metabolic pathways (Supplementary Fig. 1). Results 
can be viewed in table form or using the interactive Pathway Cloud 
plot (Fig. 1). Dysregulated pathways with greater percent overlap and 
statistical significance appear in the upper right of the cloud plot. 
Graph features can be clicked to view more information on overlap-
ping gene, protein and metabolite data, with links to BioCyc, KEGG 
and METLIN. Important features can be readily identified, help-
ing to decipher underlying biological mechanisms. Details on the 
pathway analysis and integrated omics workflow can be found in the 
Supplementary Methods. Data sharing is possible between collabo-
rators and the public, and we encourage users to share their data in 
the XCMS Online community.

To demonstrate metabolic pathway analysis and multi-
omic integration, we describe representative sample sets in the 
Supplementary Note, including metabolic pathway analysis using 
progenitor cell proliferation data and a bacterially induced corro-
sion study (Supplementary Fig. 2); proteomic integration with an 
aging study (Supplementary Fig. 3); transcriptomic and proteomic 
integration using a human colon cancer study (Supplementary 
Fig. 4 and Supplementary Table 1); a nitrate stress response study 
in sulfate-reducing bacteria (Supplementary Fig. 5) and a media 
stress response study in Escherichia coli (Supplementary Fig. 6 and 
Supplementary Table 2); and a cohort of 1,600 diabetes plasma sam-
ples (Supplementary Fig. 7), which helps illustrate the scalability of 
the cloud-based XCMS Online.

Other notable tools providing pathway analysis and multi-omic 
integration include Galaxy-M7, Open MS from KNIME8 and 
MetaboAnalyst9. However, many of these tools still require separate 
preprocessing of tandem liquid chromatography—mass spectrom-
etry data and are not fully integrated into a single program. Our 
workflow automatically maps metabolomic data directly onto path-
ways and integrates transcriptomics and proteomics for systems-wide 
interpretation in one cohesive platform. Additionally, metabolic net-
work mapping is available based on the predictive activity network 
algorithm3 for analysis of metabolomic data only, with multi-omics 
networking in development. In the future, we will incorporate unique 
metabolic pathways and networks from other sources to provide 
more comprehensive biological resources.

Data availability. To assist users with the workflow, we have pro-
vided a sample data set entitled “Ecoli_glucose-vs-adenosine” (Job 
ID #1133019) that can be found on XCMS Online under XCMS 
Public (https://xcmsonline.scripps.edu/landing_page.php?pgcont
ent=listPublicShares), as well as two instructional videos available 
on the XCMS Institute website (https://xcmsonline.scripps.edu/
landing_page.php?pgcontent=institute) under the Omics tab and 
by clicking Integrated Omics or Pathway Cloud Plot.
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Addressing reproducibility in single-
laboratory phenotyping experiments
To the Editor: Phenotyping genetically engineered mouse lines has 
become a central strategy for discovering mammalian gene function. 
The International Mouse Phenotyping Consortium (IMPC) coor-
dinates a large-scale community effort for phenotyping thousands 
of mutant lines1, making data accessible in public databases2 and 
distributing novel mutant lines as animal models of human diseases. 
The utility of any findings, however, critically depends on whether 
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they can be replicated in other laboratories. This ‘megascience’ proj-
ect is but one example of the general concern regarding replicabil-
ity3. Here we introduce a statistical approach and implementation 
(https://stat.cs.tau.ac.il/gxl_app/) that can be used to estimate the 
interlab replicability of new results in a single laboratory. 

An influential multilaboratory phenotyping study4 concluded 
that “experiments characterizing mutants may yield results that 
are idiosyncratic to a particular laboratory” on account of signifi-
cant genotype-by-laboratory interaction (G × L) in several pheno-
types. However, we proposed5 a more appropriate statistical model 
ascribing random effect to each laboratory and its interaction with 
genotype. This ‘random lab model’ (RLM) considers the laborato-
ries in the study as a sample representing all potential phenotyping 
laboratories. It therefore adds the interaction ‘noise’ σ2

G × L to the 
individual animal noise, generating an adjusted yardstick against 
which genotype differences are tested. Consequently, RLM raises the 
benchmark for finding a significant genotype effect, trades some sta-
tistical power for ensuring replicability, and widens the confidence 
interval of the estimated effect size (Supplementary Fig. 1).

In practice, however, almost all preclinical experiments are single-
lab studies. Suppose that a researcher phenotypes an important ani-
mal model and makes a discovery that the difference between the 
phenotypes of mutants and wild-type controls is large and statisti-
cally significant. How would researchers in other labs know whether 
to use this mutant and expect to replicate the effect? The RLM also 
implies that in single-lab experiments the correct yardstick against 
which the genotype effect is tested should include σ2

G × L in addi-
tion to the commonly used within-lab variability. We term this a 
‘G × L adjustment’ (Supplementary Methods; implications dem-
onstrated in Fig. 1a–c) and validate it by analyzing eight data sets 
from published multilab mouse phenotyping studies and databases 
(Supplementary Table 1 and Supplementary Note 1). These data 
sets include standard physiological, anatomical, and behavioral phe-
notypes measured in inbred strains and mutant lines. They offer the 
opportunity to assess the replicability of single-lab results against the 
multilab RLM conclusions regarding replicable genotypic difference.

From each laboratory’s point of view, we compare the G × L 
adjustment method with the standard method of analysis, a two-
tailed t-test at 0.05 significance level using within-lab variability. 
Cases in which the RLM analysis did not indicate a replicated 
genotype effect enabled us to quantify false discoveries (type-I 
errors; note that we term a nonreplicable discovery ‘false’ simply 
because it proved idiosyncratic to the laboratory discovering it). 
Over all data sets, the average type-I error rate of the standard 
method ranged between 19.3% and 41% (Fig. 1d). This can be 
viewed as an estimate of the replicability situation in the field of 
mouse phenotyping, assuming the high standardization level in 
these data sets. G × L adjustment reduced this error rate to the 
vicinity of the chosen 0.05, ranging from 3.3% to 9%, at the cost 
of reducing power by 8–30% (Supplementary Table 1). Potential 
biases in the above estimates were addressed using a simulation 
study (Supplementary Note 2).

For brevity, we present G × L adjustment by way of statistical 
significance and type-I errors, but the same adjusted standard 
error should be used to construct replicable confidence intervals. 
Comparison of multiple phenotypes requires that FDR be applied 
to the G × L adjustment P values (as in ref. 6). Similarly, the error 
rate of ‘hits’ reported by IMPC is lower than those in Figure 1d, 
because the IMPC imposes a considerably more conservative 
significance threshold. 

Whereas here, we G × L-adjust using  σ
2

G × L estimated from the 
multilab analysis, general use will employ σ2

G × L from previous 
multilab studies, with similar phenotypes but possibly other gen-
otypes, treating σ2

G × L as a property of the phenotype rather than 
of the genotype. This procedure is practical; phenotyping only a 
few genotypes across several laboratories enables σ2

G × L  estima-
tion and adjustment of other genotypes in other laboratories. No 
highly coordinated collaboration is required, as these results can 
merely be posted in a combined database for the benefit of the 
community. We provide a prototype web server for performing 
G × L adjustment (https://stat.cs.tau.ac.il/gxl_app/). By enter-
ing phenotypic results and testing conditions, users receive G × 
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Figure 1 | Adjusting for genotype-by-laboratory interaction (G × L). (a–c) Comparison of two mouse genotypes for three phenotypes across six laboratories 
from data set 1 (Supplementary Table 1). Each line connects genotype means within the same laboratory, so the slope of each line reflects the difference 
in these means. Within-lab significances (coded by line type) are all two sided at 0.05. (a) Small G × L effect (similar slopes) and significant genotype 
effect according to the Random Lab Model (RLM). (b) Moderate G × L effect (more variation among labs), but genotype effect appears fairly replicable and 
is significant according to the RLM. (c) Substantial G × L effect and no significant genotype effect according to RLM. Standard single-lab analysis would 
report significant genotype effect for Giessen that is opposite in direction to significant effects for Mannheim, Muenster, and Munich. (d) G × L adjustment 
decreases percentage of nonreplicable discoveries (type-I error rate). 
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L-adjusted P values and confidence intervals from available rel-
evant estimates, and they are encouraged to post their results in 
order to further enrich the database (see Supplementary Fig. 2). 

A similar approach ‘simulates’  σ
2

G × L by systematically ‘hetero-
genizing’ housing and testing conditions within single-lab stud-
ies7. As indicated by the consistently lower type-I error rate in the 
heterogenized data set (data sets 2 versus 1 in Supplementary 
Table 1), this may be a worthwhile effort, although the simple 
form of heterogenization used did not capture all of the estimated 
σ2

G × L. 
The concern about replicability of phenotyping results may be 

regarded as an example of the general concern about reproduc-
ibility in science, which has been attributed to issues such as the 
file drawer effect, publication bias, financial and publicity incen-
tives, etc.4. While these are all relevant problems, substantial sta-
tistical issues have yet to be addressed, such as testing with the 
relevant variability as discussed here. The G × L-adjusted P value 
and confidence interval indicate the prospects of replicating the 
result in additional laboratories. Reporting these values side by 
side with the usual P value and confidence interval will promote 
replicability of preclinical research.

Data availability statement. All data and analysis are publically 
available; see “S.3 Data and Code Availability” in the Supplementary 
Information.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.

ACKNOWLEDGMENTS
This work is supported by European Research Council grants FP7/2007-2013 ERC 
agreement no[294519]-PSARPS (Y.B., N.K., I.G., I.J., T.S., and S.Y.) and REFINE 
(H.W.). We thank the International Mouse Phenotyping Consortium (IMPC) and 
their Data Coordination Centre for the provision of phenotyping data sets.

AUTHOR CONTRIBUTIONS
N.K., I.G., and Y.B. conceived the project in cooperation with all other authors. 
All authors contributed and/or extracted previously published data. I.J., H.M., 
T.S., S.Y., and Y.B. performed statistical analyses and programmed software. N.K., 
I.J., and Y.B. drafted the paper, to which I.G., H.M., T.S., H.W., and S.Y. also 
contributed. 

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Neri Kafkafi1, Ilan Golani2, Iman Jaljuli1, Hugh Morgan3,  
Tal Sarig4, Hanno Würbel5, Shay Yaacoby1 & Yoav Benjamini1,6

1Department of Statistics and O.R., School of Mathematical Sciences, Tel Aviv 
University, Tel Aviv, Israel. 2Department of Zoology, Tel Aviv University, Tel Aviv, 
Israel. 3MRC Harwell, Mammalian Genetics Unit, Oxfordshire, UK.  4Department 
of Statistics and Data Sciences, Yale University, New Haven, Connecticut, 
USA.  5Division of Animal Welfare, Vetsuisse Faculty, University of Bern, Bern, 
Switzerland. 6The Sagol School of Neuroscience and The Edmond J. Safra Center 
for Bioinformatics, Tel Aviv University, Tel Aviv, Israel.  
e-mail: ybenja@post.tau.ac.il. 

1. de Angelis, M.H. et al. Nat. Genet. 47, 969–978  (2015).
2. Koscielny, G. et al. Nucleic Acids Res. 42 D1, D802–D809  (2014).
3. Collins, F.S. & Tabak, L.A. Nature 505, 612–613  (2014).
4. Crabbe, J.C., Wahlsten, D. & Dudek, B.C. Science 284, 1670–1672 (1999). 
5. Kafkafi, N., Benjamini, Y., Sakov, A., Elmer, G.I. & Golani, I. Proc. Natl. Acad. 

Sci. USA 102, 4619–4624 (2005). 
6. Richter, S.H., Garner, J.P. & Würbel, H. Nat. Methods 6, 257–261 (2009). 
7. Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N. & Golani, I. Behav. Brain Res. 125, 

279–284  (2001). 

http://dx.doi.org/10.1038/nmeth.4259
mailto:ybenja@post.tau.ac.il



